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Some results established in [l-Q] for autonomous reversible systems are extended to periodic systems 

that are reversible under the substitution I +-t, x+M(-t)x, M?(t)-E (where E is the identity 

matrix), both in the non-resonant case and in the case of internal resonance. A complete solution of the 

problem of stability in the first approximation is derived for single-frequency reaonan~, which have 

no analogue in auto~mo~ systems. It turns out that a system with one degree of freedom is either 

unstable or stable to any finite order. It is shown that the known conditions [S] do in fact guarantee 

formal stability in the rolling of a heavy, homogeneous, almost symmetric ellipsoid in the principal 

plane. 

1. PRELIMINARY REMARKS 

CONSIDER the system 

x0 qA(r)x+X(x,t); x,XERk; x(O,t) = 0 (1.1) 

where the left-hand sides are analytic in x. The real kx k matrix A(t) and non-linear (in x) 
vector-valued function X(x, t) are assumed to be w-periodic, continuous functions of the 
independent variable t, with piecewise continuous derivatives, so that they are represented by 
their Fourier series. 

System (1.1) is said to be reversible with a linear automorphism M(t) if it is invariant under 
the substitution t + -t, x + M(-r)x, where M(r) is some k x k matrix that may depend on t. 

In this case, it is obviously true that 

-=M(r)A(---7) + A(r)M(r), M(?)X(x, -7) + X(M(r)x, 7) = 0 
dT 

(1.2) 

(2” -r). This def~tion of a reversible system, which differs from the usual one (see, for 
example, [6]) only in that M is allowed to depend on t, directly implies that the reversibility 
property is invariant under any linear transformation x = B(?)y, detB(t) 2 l > 0. In the new 
variables, the system 

Y” =&(f)y+Y(y,r) (1.3) 

admits of an automorphism M,(r) = B-*(r)M(r)B(t). 
System (1.1) is reducible to (1.3) (see [7]) with a constant matrix A,. If M* = E, it is also true 
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that Mf = E, and the relational 

ml ml 
-=Ml (T)A, +AlMl@), MI------+ 

a1 
---Ml=0 

dr dT dr 

together with the fact that A, is constant, imply that M; ~0. Consequently, M, is also a 
constant matrix. This is the case considered below. 

Let l+ and L denote the number of eigenvalues of M1 equal to +l and -1, respectively. Then 
there is a non~egenerate linear tra~formation that will reduce system (1.3) to a form in which 

Ml = 11 E’ ’ 11 
Q Ei_ 

(Ej is the identity &matrix). 
Finally, we note that a normalizing transformation will preserve the constant linear auto- 

morphism M, [8],t and combining the aforementioned together with known results [2, 81, we 
at once infer the following properties of system (1.1) with an automorphism M(t), M’(t) = E. 

1. The system cannot be asymptotically stable; this follows from the fact that, apart from y(t), 
system (1.3) also has the solution M,y(-t). 

2. The system may be stable only in the critical case in which it has m zero and n pairs of 
purely imaginary characteristic exponents. 

3. If 1, -L_ = m and i_ = n, the system will be formally stable in the non-resonant case. 
If Z, & I_, we have an N-system [2]. Obviously, besides property 3, the other properties of N- 

systems es~b~shed in [2] are also valid. In the opposite situation, when 1, c t, one can already 
establish instability [4,9] with respect to second-order forms. We also note that the number of 
zero eigenvalues of a matrix A1 with simple elementary divisors is at least 11, -I I. 

Suppose that in an N-system (l+ *I_) there are exactly rt = Z.. pairs of purely imaginary 
eigenvalues +A, that satisfy a resonance condition 

plxl t ,.I tp&=i2nw-‘q, q E Z,pf E 2 0 =l,...@) 

where I&I+... + tp,, ia 1 and identical values of a, have simple elementary 
system (1.3) may be written in the form 

5 ‘=%0?,%r) 
v‘=l\rl+H(Lrl,-, 1 n t , @‘=A@ t fi(t,q,?i,t); A= diag(h, ,..., %J 

(1.4) 

divisors. Then. 

(1.S) 

(the bar denotes complex conjugation, 4 is a real m-vector and 11 and ?j are complex n-vectors) 
with a linear automorphism t--+-t, q+Yj, ij+ Q. By virtue of this automorphism, the 
expansion of the non-linear terms 5, H, ?ji in powers of & 17, q with coefficients that are o- 
periodic functions of t, of the form c.exp(i2lc/wvt), VEZ, will contain only purely imaginary 
constants c. This property is preserved under no~al~tion (1.5). 

In the case of m~tiple-frequent resonance, when the vector p =&, . . . , p,,) has at least 
two non-zero components, the problem of stability with respect to finite-order forms may be 
reduced completely to the autonomous case with q = 0 [lo]. As the resonance coefficients are 
purely imaginary, the results of [l-3] hold in this case also. 

A unique feature of periodic systems is the possibility of sidle-frequent resonance, when 
q f 0 in (1.4) and all components of p vanish except, say, pl. Then a system of general form 
with odd-order (first or third) resonance is usually unstable [ll]. This is also true of a 
reversible system (1.1). 

See aIso BRYUNO A. D., Sets of analyticity of a normalizing transformation. Preprint No. 97, Inst. Prikl. Mat., 

Moscow, 1974. 
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The problem of stability for odd pr has received fairly thorough treatment for Hamiltonian 
systems [12]. It turns out that the problem may also be solved quite exhaustively for reversible 
systems (1.1) to the first non-linear approximation, but in systems of general form it has been 
possible hitherto to establish only sufficient conditions for instability and asymptotic stability 
P31. 

2. TWO AUXILIARY LEMMAS 

The stability of the trivial solution of an &periodic reversible system (1.1) usually has to be 
considered when one is investigating a local neighbourhood of an o-periodic motion of an 
autonomous reversible system of the type envisaged in the Heinbockel-Struble theorem [14]. 
We will state a generalization of that theorem, which will be needed later. 

Lemma 1. Any motion &) of a reversible system 

x =X(x,t),MX(x,t) tX(Mx,-r) E O,xERk,detM#O (2.1) 

in which the right-hand side is 2x-periodic with respect to n,, . . . , xp (p c k) and @periodic 
with respect to t, such that I, dvw+ A) E L, 2A = wl, v E Z, 1 EN, is d-periodic in 
X* = TP x Rkep (where TP is a p-dimensional torus in x1, . . . , xp space) if 

L= {x.x=a,M 2S+1a=at2nq; sEZ] 

where q=(ql,..., qk) is a vector with integer coefficients and qptl = . . . = qk = 0. 
The question now arises, which motions cp(t) of a reversible system (2.1) have neighbour- 

hoods in which the equations of the perturbed motion are also reversible? The answer is given 
by the following lemma. 

Lemma 2. Any motion Hr) such that q$&) E I for some I E Z has a neighbourhood in which 
the equations of the perturbed motion are reversible with an automorphism M’*‘. 

To prove Lemma 2, we will assume without loss of generality that gr(O)eL and consider the equation 

of perturbed motion 

Y .=Y(y, r) = X(Y + ‘p U). t) - X(v U) 7 f) 

We have 1M2”‘(p(O)=gr(O)+2ng for some q. Thus, on the assumption that the solution is unique, I(ltr+’ 

q(t) = (p(-t)+2xq. Hence, since X(x, t) is periodic in x,, . . . , x,, we obtain 

M2S+1X(y+dt), r) = -X(M as+l(Y+lp(t)),-t)=-X(M'~+ly+p(_~),-~) 

M*S+‘Xw).t) = -x(MaS+l$o(r), -4) = _X(q(_q), _f) 

that is 

M as+1 Y (y. t) + Y(MzS+‘y, -t) = 0 

3. A SYSTEM WITH ONE DEGREE OF FREEDOM 

Consider the case of a system with one degree of freedom, when m = 0, n = 1. 

Fourth-order resonance. 44 = i2zai’q. Normalize system (1.5) to Kth order terms inclusive. 
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Then, using the previous notation, we have 

q1’=&9 + ill1 z 
a>. 1 

C,p(9~l)l)a@~eh~f)4P+ . . . (3.1) 

3 62a+4P+ 16K 

(the unwritten terms are of order greater than K with respect to 171 and 5, C are real cons- 
tants, and the complex-conjugate equation is omitted). If we make the replacement of variable 
11, = z@” in (3.1) we obtain the following equation in variables z1 and Z, 

Finally, changing to polar coordinates z, = r;l’e’%, we get 

r;=2c_, ,rfsine t2 z 
aa -1 

5 62 a+4@+ 1 <K 

6’=2(C,,o + c-i,1 cos+, + 2 z c 4 r”+%s/3e 1 + . . . 
a> -1 

4<2o!+4@+16K--1 

(3.2) 

Hence, it is obvious that if IC,,, l<lC_z, 1 I the model system, truncated at the first non-linear 
terms, has an increas~g solution which is a ray, implying instab~ty with respect to third-order 
forms. 

Let IC,,, I>1 C_,, I. Then it is obvious from the second equation of (3.2) that, for sufficiently 
small r,, 6 is a monotone function of time. 

The system is reversible with an automorphism t j-t, r, -+ r,, 8 -+ -8. The set L of Lemma 
1 for (3.1) is the pair of rays 8=0, a. Therefore, as the angle 0 varies monotonically, any 
trajectory of the autonomous system obtained from (3.2) by dropping the unwritten terms (i.e. 
truncated at the Kth order terms, where K is any finite integer) will cut the rays 8 = 0, 0 = z 
and will be a periodic motion. 

Theorem 1. Suppose that IC,,, IcIC_~,, I for a system with one degree of freedom and a 
fourth-order single-frequency resonance. Then the system is unstable in Lyapunov’s sense, If 
the reverse inequa~~ is true, the system is stable to any finite order. 

Second-order resonance. 24 = i2~u&‘. A similar analysis also holds in this case. The anal- 
ogue of (3.2) is the system 

Lri=(C_sintl + C_1,2sin20 )r: z C,pr~+p+lsin@l + . . . (3.3) 
2 o!, -1 

5 62cx+2@+ 16K 

--+ 3 *= (cl,* t c+c0se + c_1,2c0s2e)r1 + IiT 
a> -1 

c,@rp+%ospe + .*. 
462c~+2@+fQK-1 

e =28,,C*=C~,~ +cz, __I 

Theorem 2. Given a system with one degree of freedom and a second-order single-frequency 
resonance such that 

(3.4) 

(C. = C, ,, -C_,, 2), the system is generally (that is, if none of the roots of the quadratic equation 
2C_1, z~i+ C+K+C. = 0 and the linear equation 2C_1P & +C_ = 0 are equai) unstable in the 
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Lyapunov sense. If at least one of the inequalities is reversed, the system is stable to any finite 
order. 

Using the truncated systems (3.2) and (3.3), one can carry out an elementary analysis in the 
phase plane of the model system obtained by considering only the first non-linear terms. For 
example, in the case of second-order resonance, the qualitative phase portraits in the complex 
plane, in all non-degenerate cases and a few degenerate cases, are those shown in Fig. 1 with 
the following values of the parameters 

1. IK~,?I >l,lmK = 0 or ImK1,2 20 I,2 

2 l~il <l,l~~l >l,ImKi,2=0 

3. (K 1,2) < l,ImK1,2 =o, (2c_1,2K1 +c-1 (2c--1,2K2 +c-> ‘O 

4. 1K1,21 <l,hnK1,2 =a, (2c_1,2Kl +c-)(2c-l,2K2 +c-)<o 

5. Kl=l, lK21 >1 

6. K1 =I, 1 K2 1 < 1, @c-1,2 +c-) (2C-l,2K2 + c-> <O 

7. K1 =K2r IK1.21 <1 

8. 1 K1 1 < 1, 1K21 > 1, 2c-1,2K1 +c- =o 

9. IK 1.21 < 1,2c_i,2K1 +c- =o. 

The non-degenerate cases are those in which the roots rrl,2 of the quadratic equation are 
distinct and neither of them is a root of the linear equation or +l (cases 14) In some situations 
(e.g. 2 and 4) the trajectories may either go off to infinity as t j +w (the solid curves in Fig. 1) 
or tend to zero (the dashed curves). The exact shape of each trajectory depends on the sign of 
the derivative with respect to 8 of the coefficient of r, in the equation for 8 on the ray (e.g. if 
the derivative becomes negative as one moves along the ray to infinity, the solution will go to 
infinity in the vicinity of the ray; otherwise it will tend to zero). 

Generalization to m 3 1, n = l.When there are zero roots corresponding to the variables 5 
the normal form (3.2) or (3.3) must also contain a differential equation for the vector 5 in 
which there are no terms of order up to K inclusive. The right-hand side of the equation for 8 
will contain an additional term, which vanishes at 4 = 0. 

Clearly, the third-approximation system will have increasing solutions at {=O when the 
conditions for the existence of the latter, as ascertained for m= 0, are satisfied. Suppose that 
these conditions fail to hold. Since 4 = const are first integrals of the truncated system, it 
follows that, in an unstable system, r, will increase along the relevant trajectory. Therefore, if 
the trajectory connects points inside a Sneighbourhood and outside an l -neighbourhood, then 
II { II< S on the trajectory and when I: -6 the angle 8 will be determined by a term which 
depends only on r,, that is, it will preserve its sign. Consequently, by Lemma 1, it will be a 
periodic solution. If this set of periodic solutions leads to instability, then, since S is arbitrarily 
small, a periodic solution with an arbitrarily large period exists. But such a motion must also 
exist when .ka = 0, and this is impossible by assumption. 

Theorem 3. Theorems 1 and 2 remain valid for any m > 0. 

4. MULTIDIMENSIONAL SYSTEMS 

Suppose that system (1.5) has a fourth-order single-frequency resonance. Then, after 
normalization, the model system of the first non-linear approximation will be 

es= Z[cw(F) + ,e,.,‘,l +2(C1.0 +C_l,I~s~h (4.1) 5: 
r; = 0, ti =O (s =2, . . . . n; j = l,..., m) 
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Im Z Im z Im Z 

Im Z Im Z Im Z 

FIG. 1. 

(a({) is a quadratic polynomial in 5, without free term). Obviously, if IC,,, I<IC_, 1 I system 
(4.1), like the original system, will be unstable, since under this condition it has an increasing 
solution-a ray-on the manifold r, = 0, & = 0 (S = 2, . . . , n; j = 1, . . . , m). If the reverse 
inequality is true, system (4.1) will be stable, because the integral 

is sign definite. 

t Zr :) (y - const) 
fl=l 

Theorem 4. A necessary and sufficient condition (up to the equality sign) for stability of a 
model system with fourth-order single-frequency resonance is that I C,, o ICI C_, 1 I. 

The analysis of stability for second-order resonance is much more difficult. The model 
system is then 

Ef =o 0’ = l,...,M) 

$ri= [p(g) + 5b r t (C_ +2C_1,~cosO)r1]r~sin0 
g=z *p (4.2) 
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1 
- r;=C,r,t~sirie (s =2,...,?2) 

2 

cod + $(a,,, + b,cosd)r, + (Cl,~ + C+cosB t C_,,2~~~2e)tl 

(a(B and p(5) are quadratic polynomials in 4 without free terms and $, b, and C, are real 
constants). This system admits of a linear automo~~sm t + -t, 4 + 5, r -+ r, 8 + -6. 

Clearly, if condition (3.4) holds, the system is unstable, and there will be increasing solutions 
in the form of rays. Suppose the condition is false. It is obvious from (4.2) that each of the 
manifolds q=O (i=l, . . . , n) is invariant; moreover, r, = 0 consists solely of steady and 
periodic motion of the form r, = const, & = const (s = 2, . . , , n; j = 1, . . . , m). In addition, it 
was shown in Sec. 3 that there are no solutions on the manifold r, = 0 (s = 2, . . . , n) that 
produce instability. It follows that on such trajectories necessarily r,r, + 0 for at least one a: = 2, 
.,*, . 

It krns out that on each of the manifolds 

W, =(g,r :~=O,tj=O(j=2 ,..., R, j #C$,rlr.fOl 

system (4.2) may have an increas~g solution in the form of a ray. A s~~cient condition for this 
to be true is that the system 

b,K, + (c_ -c, + 2c_i,9S~ *)x1 =o 

(a* tb,COSB*)X, t fC*,o + C+cosB* t c-1 JCOS~~&i =Q 
(4.3) 

should have a positive solution 4, K, for which sin@. $0. Obviously, if system (4.3) has 
such a solution at +&, it will have a solution at -0, as well. Thus, for each solution x1, K, of 
system (4.3) there are two rays 8= k@. such that the solution goes to infinity along one 
(C,sin@. >O) and tends asymptotically to zero along the other. It is not hard to derive 
conditions on the ~~fficients of the system for this to be true. 

Let us consider a case in which system (4.3) is not consistent for any a, i.e. the manifolds W, 
do not contain solutions that are rays. All the trajectories on the integral manifold 

V,=LE, f : r 1 *I),..., rk #U, r k+ 1 =... =r,=Ofl Gk Lsn) 1 

may be divided into three types: (1) sin 8 vanishes at least twice on the trajectory; (2) sin 8 
vanishes only once (at f =t.); (3) sin0 $0 on the trajectory. In the first case, by Lemma 1, the 
solution is periodic. Case 2 when t > r. (or t cf.) reduces to case 3. 

Let us consider case 3, noting in advance that the variable r Ir for which C, = 0 may be assoc- 
iated with the variable 4. If there is a sign change in the sequence of numbers C,, . . . , C, and 
moreover 

J =Trl(f)sine (t)dt=m 
d (4.4 

then the solution cannot be bounded; here T is the time the solution exists. But if C,, . . e , C, 
are all of the same sign, then either the solution is unbounded (KY, = +=) or it asymptotically 
approaches a steady value 4 = const(JC, = -). If J is finite, the solution will be asymptotic to a 
steady solution on the set tp = 0. When that happens, necessarily r, sin0 + 0, and as r, + 0 we 
must have rs + 00 for at least one of s= 2, . . . , k, which is impossible by assumption. 
frequently, sin@ + 0, and the steady value does not belong to the family 5 = const, r + 0. 
Otherwise, the reversibility property of (4.2) implies that there is a periodic motion and J does 
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not exist. 
We will show that, if there are no ray solutions, the system is stable in Lyapunov’s sense. 

System (4.2) is homogeneous up to a transformation of the inessential variables 5. Stability will 
therefore follow if we can show that the set of all trajectories that begin in a certain 6, c sphere 
S, is bounded. 

Suppose first that the numbers C,, . . . , C, are all distinct; we may assume without loss of 
generality that 0 c C, < C, < . . . CC,. The equations for rP (s= 2, . . . , n) imply that for any 
K > 1, if r, > Kc*, then also 5 = KC”‘5 * (8, j= 1, . . . , k), where ({*, f*) E St. 

For any v > 0, therefore, 5 < vr;:, i # j, if ‘;:* c vK~-~@‘~ *. 
Let i = 2, j # 2. For s~~endy small v = v, and arbitrary Es: = K,, the solutions such that (e* 

I*) E U, = {e*, r*: 4* c v2K~-c+%,*; j= 3, . . , , k} satisfy the condition 5 < v,r, (j = 3, I . . , k), 
and the sign of 8’ on the corresponding trajectories (except possibly for a small neighbour- 
hood of 8’ = 0) is determined by the terms with r, and r,. Fix some Kz, 

For arbitrary v, > 0, K, z 1, define a set 

For s~ficiently small v, and arbitrary A$, the sign of 8” for a solution with (t*, r*) E U, is 
determined by r,, r, and r,, but for sufficiently large K3 SK, it depends only on r, and r,, 
provided that Kz * r,* s r, c KS4 * (where K, c K, * is some number). This follows from the 
condition C, > C, and the equations for r, and r,. Continuing the process, we divide S: into 
sets U, (s=2,..., k) such that if (p, I*) E U, and KWl * r8* s r, s Kara*, the sign of 8’ depends 
on the terms with r, and r, only, where the numbers KS_., * K, are independent of the specific , 
choice of a point in U,. 

Looking at a solution with (i*, r*) E U, for Ku_, * ra* c r, c K,r,*, we see that there are two 
possibilities: (a) 10’ I> 2g1, where E is some positive number; (b) the solution is in the set 
lfYl~&,. In the first case, estimating d~ld0 (j=l, . . . , k), we find that rc* Grr,exp 
[C,(&@*)/E] (P = const). Consequently, if K, is s~ficiently large, then sin 8 vanishes twice, 
and by Lemma 1 such motions in U, are periodic. 

Now, assuming that E is Sweeney small, let us calculate the derivative of 8’ in case (b). We 
have 

where Q, is a quadratic polynomial in cos 0. It can be shown that (p(Q) may vanish either when 
conditions hold that guarantee the existence of a ray, or in the degenerate cases (p(O) = 0 or 
drc) = 0). Disregarding these cases and estimating dq /de’ (j= 1, . . . , k), we conclude that the 
solution will either leave the domain I Vksq (after which case (a) will hold) or reach a point 
of rest. Thus, all the solutions in U, are bounded. 

Now suppose that some of the numbers C,, . . . , C,, are equal, say these are C,, - . . , cay. 
‘Then system (4.2) may have ray solutions in the sets 

In that case 

W a1 . ..%‘= i I,r :$=O, Fj =O@ =2 ,.,., ?Z; j +Q,i=l,..., r)l 

Cp Ce) = is1 [%j (Gj, - C_) tby(Ct,o -C-1.2) +by(C,j’C,-c-)coseIKui 

where K~, are certain positive constants, and a ray 8=8* exists if Ha)=: 0, sin0. ;tO and 
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If there are no rays, stability may be established in this case too. 

Theorem 4. Suppose that the non-zero c~f~cients C, in a system (4.2) fall into j3 groups of 
equal numbers Cot, . . . , C+. Then a necessary and sufficient condition (up to equalities) for 
the stability of (4.2) is that at least one of the following conditions should hold in the non- 
negative cone K_ a 0 (j = 1, , . . , f) for all j3z (1) Eq. (4.5) has no roots, (2) for each root 0, of 
E$. (4.3, we have cp(a) itO. In the unstable case system (4.2) has an increasing solution that is 
a ray, and the original solution is unstable with respect to third-order forms. 

5. EXAMPLE 

Let us analyse the stability of rolling of a heavy homogeneous ellipsoid in the principal section. As 
variables, we take x, y, z-the coordinates of the points of contact, and p, q. r-the projections of the 
angular velocity in a system of coordinates rigidly attached to the ellipsoid with axes parallel to the latter’s 
axes. The equations of motion [15] are reversible [2] and admit of three linear automorphisms (one of the 
pairs (x, p), (y , q), (z, I) changes sign). For motion in the x, y plane we have p = q = 0, z = 0. If r vanishes 
twice, then by Lemma 1 the motion is periodic-oscillations about an equilibrium position. The second 
possibility is r + 0 [16]. Here x (or y) vanishes, and by Lemma 1 the motion is again periodic-rolling in 
one direction. 

Let us assume from now on that the motion takes place without jumping; stability under such 
conditions has been analysed in the linear approximation.? 

The set L of Lemma 2 consists of the points at which one of the above pairs vanishes. Hence the 
equations of the perturbed motion in the neighbourhood of rolling are again reversible with periodic 
right-hand sides. Replacing the variables x, y by generalized polar coordinates x = upcos(p, y = bpcosqt 
(where a, b and c are the semi-axes of the ellipsoid) and transforming to a new time variable Q, we see 
that to a fiirst approximation the equations for p, q and z are separable and 2 n-periodic with respect to Q. 

By reversibility, this third-order linear system has a reciprocal characteristic equation [17, p. 711. Hence 
one of its roots is one, and the other two are determined by the equation 8 -24~+1= 0 and I q, 2 I= 1, if 
I A i< 1. If the ellipsoid is nearly symmetric (a = u,(l- l ), b = a,(l+ E), eel), the number A, and hence 

also Kk2, may be found by expanding in powers of E. It turns out that the condition of [5] applied to this 
ellipsoid, up to terms of order 2, guarantees I A 1-c 1 if we define cu to be the mean angular velocity of 
rolling. Hence, the condition for stability is 

wa > a0 
(uf + 2) (6zo 4) 

1447: 
g + de’ + .., (g = 9.81.J 

By property 3 in Sec. 1, if tbii condition holds, the rolling motion will be formally stable, provided there 
is no resonance. 

Analogous expressions may be found for the roots ‘c,_ *. 
Unfortunately, these expressions are all quite lengthy and cannot be reproduced here. 
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